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-- 7A new method of estimating wall interference in unsteady flow
is presented. This method is valid for subcritical flow within the accuracy of
the linearized small disturbance theory. The main feature of the method is
the use of measured pressure along lines in the flow direction near the tunnel
walls. This method is particularly effective in a tunnel with ventilated walls
because it does not require the representation of wall characteristics with
unreliable mathematical expressions. Results of some numerical examples
indicate that the new method produces satisfactory results except for case
when the reduced frequencies are close to the tunnel resonance frequencies.
For the case of an airfoil in pitching motion, the method has been used to
correct the amplitude of the angle of attack and the time lag in the motion. A

RESUMEk

Une nouvelle m~thode d'estimation de Ia perturbation des
6coulements instationnaires par des parois est pr~uent6e. Elie s'applique aux
6coidements subcritiquos dans l'intervaile de pr~cision permis par la th6orie
des potites perturbations lin~aris6es. Ba principale caract6ristique eat l'emploi
de mesures do la pression tangentielie i 1'6coulement pn~s des parois de la
soufflerie. La m6thode eat partlculiiremont utile dans lea soufflories a parois
ventildes car elie ne n6ceusite aucune repr6sentation math~matique, souvent
erron~e, des caracti6rlstiques des parois. Lea r6sultats de quelques exomples
numhriques montrent quo la nouvelle m6thode donno des r~sultats satis-
faisants, sauf loreque los fr~quences r~duites approchent lea fr6quences do
r6sonnance de Ia soufflorle. Pour un profil adrodynamique en tangage, la
m6thode a permis de corriger l'angle d'attaque et le retard dana le mouve-
ment.
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NOTATIONS

Notations Definition

k. sound speed of undisturbed uniform flow

Cp pressure coefficient

CPO, CP, CPS defined in Equation (22)

CpH pressure coefficient at z = H

p0' CH.i Equation (56)

CH Equation (57)

CL lift coefficient

CLc, CLs defined in Equation (92)

1 CL a I CL I due to unit pitching motion

Cp defined in Equation (27)

C P defined in Equation (21)

CP defined in Equation (53)

c airfoil chord length

fc, fs defined in Equation (78)

H -- H

H tunnel semi-height

H0  the Struve function

hA hA amplitude of plunging motion

i imaginary number

I defined in Equation (74) or (85)

JO Bessel function

K defined in Equation (59)

defined in Equation (34)

Y",K, defined in Equations (36) and (37)

(vi)



NOTATIONS (Cont'd)

Notations Definition

k an integer

A C(4k reduced frequency = 2U

M a large positive number

M. uniform flow Mach number

m an integer

n normal outward co-ordinate to a or an integer

No  the Newmann function, Equation (A-21)

P defined in Equation (A-10)

Q a large positive number

R a large positive number

Sc defined in Equation (80)

Sc defined in Equation (83)

sco mean camber of airfoil

t transformed time variable, Equation (5)

t time

U. uniform flow speed

w upwash along the z-axis

wC, wS  defined in Equation (66)

WC, wS defined in Equation (39)

WA defined in Equation (60)

Wr, Wi defined in Equations (63) and (64)

W defined in Equation (65)

Wdefined in Equation (38)

W, defined in Equation (73)

£t distance measured from the pitch axis in the uniform flow direction

(vii)
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NOTATIONS (Cont'd)

Notations Definition

x transformed i, Equation (5)
XL  leading edge i-co-ordinate

trailing edge i-co-ordinate

XL, XT transformed XL and XT

AA

z distance upward from x-axis

z transformed z, Equation (5)

at, C angle of attack

Co, 0o time-averaged angle of attack

CA , C'A amplitude of angle of attack of pitching motion

defined in Equation (4)

Euler constant (=0.5772156649)

ACpC ACps defined in Equation (53)
ACpc, ACpc, ACPS defined in Equation (32)

Azp pressure coefficient difference between the upper and lower airfoil surfaces

ACP defined in Equation (71)

A C defined in Equation (70)

AJ[, AK. defined in Equations (61) and (62)

AW defined in Equation (69)

AaA 'C'A - aA

AT time lag of pitching motion, Equation (1)

an boundary ofC

anp a small circle with the radius p and the center at (xz)

anR a big circle with the radius R and the center at (xz)

e a small positive number

*, 9 Integral variables

(viii),



NOTATIONS (Cont'd)

Notatime Definition

9 defined in Equation (15)

(, r) (xA)

p a small positive number

full velocity potential functions

small perturbation velocity potential functions, Equations (42) and (43)

*0, , defined in Equation (8)

.0OC, OS defined in Equation (10)

O, transformed , Equation (43)

0" defined in Equation (45)

defined in Equation (14)

phase lag in lift, Equation (91)

4analytical real valued function in 12, Equation (47)

4. defined in Equation (17)

4integral variable

a part of flow field

A
w angular velocity of pitching or plunging motion

0w transformed W", Equation (9)

O,o the Landau's symbol, Equations (A-30) and (B-9)

sigp (x) - Iforx>0
-1 for x<0

(-) averaged value over the airfoil

OX
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A NEW METHOD OF ESTIMATING WIND TUNNEL WALL INTERFERENCE
IN THE UNSTEADY TWO-DIMENSIONAL FLOW

1. INTRODUCTION

The unsteady wall interference problem has not been as thoroughly investigated as the
steady case (Refs. 1 - 5). A new method of estimating the wall interference in unsteady subsonic flow
is presented in this paper. The method requires the time-dependent pressure along lines in the flow
direction near the tunnel walls and on the airfoil model to be measured. The pressure along the lines
will be that on the walls if the tunnel walls are solid. This method is particularly effective if the walls
are ventilated, since the method is valid no matter how complicated the wall characteristics may be.
The merit of this approach is similar to that for steady flow which were developed by several re-
searchers (Refs. 6 - 10). There is only a slight difference between the steady and unsteady wall inter-
ference problem, and that lies in the fundamental equation for the small perturbation potential.
In incompressible flow, even this difference vanishes and the wall corrections can be obtained using
similar method developed for steady flow. The new method will first be presented in the analytical
way and then some examples of the corrections for a pitching airfoil will be calculated. The data
used here are not obtained by tunnel tests but by numerical means.

2. ANALYSIS

Suppose a thin airfoil is in pitching motion with a constant angular velocity W' in free air.
In this case it is convenient to locate the origin of a space co-ordinate system (i,z) at the pitch axis,
where 4 is the distance measured from this axis along the uniform flow direction and zi is the distance
perpendicular to the i axis. The time Ar is defined as the time when the time-dependent averaged
positions of the airfoil coincide. The angle of attack, a, (Fig. 1) for this airfoil can be written as
follows:

0((t) = 0( 0 + O(A si- St[. t ( A-(1)

In order to simplify the analysis, the flow is assumed to be inviscid, irrotational and
subcritical everywhere. Furthermore the thin airfoil approximation is also assumed to be valid. By
the aid of these assumptions, the fundamental equation for the small disturbance potential function
can be written as

+ a.- c. =0 I (2)

where 0 is defined as follows:

U.' + (3)

O(xz) is the full velocity potential function. M and a are the Mach number and the sonic speed
for the undisturbed flow infinite upstream. Variables are introduced as follows:

P1. A C Mi~ 2(4)

^nd P S ( C (5)

where c is the chord length of the airfoil. Equation (2) becomes

-- !
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2 (6)

where the operator V2 is

V - ' + d' (7).

Suppose the flow disturbed by the oscillating airfoil with constant angular velocityLAO is

also periodical in time with the same angular velocity everywhere, within the accuracy of the small

disturbance theory, then $can be written
( , = qo( , ) .@ (:. S-in(.t + 0.( or s

CO (8)

Defining cw as

co S . ^(9)

gives

Sin= C, f(4,.) + OCr,z)co.s(0t) (10)

where 4i0, @ and s correspond to 00, Oc and 0s in Equation (4).

Substituting Equation (10) for into Equation (6) gives

V 2 0 = 0 (11)

13 + Oil", -0, (12)

and V +(Ps f2 . + £49' s 0 (12a)

Introducing the new function &* defined as

0 = + e (13)

Equations (12) and (12a) can be combined into one equation:

V -4 0,t (14)

where K = W/ . (15)

From Green's theorem, the following expression for ;* can be obtained:



• 2 -*-9*ds •(16)

where is a real valued analytical function throughout the flow field 1 and al is its boundary and
n is the outward normal co-ordinate to all. The following form for V is considered here:

nI P f, - 0 -s/:6

2- .Cos ( -r)9 d8 "  (17)

is continuous and differentiable two times with t and ' except the point (xz) and satisfies the
following equation except at that point:

Ivy/ =0. (18)

Define S as the full space except the point (x,z) and the x axis downstream from the leading edge,
Equation (16) reduces to the following expression:

L - *yI +- j d& (19)

where

P]_= t;m j ( )- ,-4)J . (20)

Appendix A can be referred to for the detailed derivation of the above equation. xL is the point which
corresponds to the leading edge k-co-ordinate ^ L in Equation (5).

The dynamic pressure coefficient Cp (x,zt) can be calculated from € as follows:

-- ( + tj(, _ (21)

Substituting Equation (8) for in the above equation gives

CP(Xz C? r,(. .) a(O + CF T )-sn6 t(22)

where

C , " .!x (23)

uZ P4- I.)

A

and A As(A) (25)C? ,V
U. -7C
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With the aid of Equation (14), Equations (24) arnd (25) can be combined into one expression.

C ?( T, X) = 2 . ( .I . - -j (26)

where CP= CFC + i Cp5  (27)

Solving Equation (26) for * with the boundary condition:

0*(x,z) =0 infinite upstream, (28)

gives

(P*~ ~~ dXC C" M, (29)

From Equation (20) follows

where

CP(T ) =A Ce('%) + ~CP S(Z) (31)

A~cj( and ACp are defined as

E + A C'pea(")-CPS(tZt #4 ~SM cutZ), (32)

where ACP (x~t) is the time-dependent pressure coefficient difference at i between the upper and lower
surfaces of the airfoil.

Differentiating both sides of Equation (19) with respect to z and substituting Equation (30)
for f~Jin Equation (19) after letting z tend to zero give the following expression

W() V ). (33)

where K(x) - Kr(T) + i kiCt) .(34)

and &is the reduced frequency defined as

(35)
UTOD
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K, and Ki are also defined as

4 ^~ 
.. o

z-I

(36
AA

Kr(-,,OA) =AA

- AtvI. cos(?fe f )r'Cost - -A 
4

( = w-i-/ 2; i .. v, (36)

-~ A A

Kz(,t) sinw&X ( - .coS(2 A +)-sint 2j

_ _ _ _ Vg- S - M ( '2.) - ( 0

+ sit, (2 x)f s/ 9(OLx

whrtea up (,~ ln the airfoil is i icigmto expressed as fqaoo ,ws: n $cnbecluae

Wcost =2 Xc)~) Tr (39)

easily and given as

A A AA

W~iA A I0~ A ).d~'j (40)
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From Equation (33) the pressure distribution on the same airfoil model in a different pitching motion
in a wind tunnel can be obtained. The uniform flow condition infinite upstream in the tunnel is the
same as in the free air and the angular velocity of the motion and the fixed point are the same and
the same xz co-ordinate system can be used. However, the time origin is not defined in the same way
as in the free air. In this case, the time when the position of the airfoil coincides with its time-averaged
position is defined as t = 0. The angle of attack a for the airfoil in the tunnel can be written as follows:

() t X.si ( c& ) (41)

The half height of the tunnel is H and the fixed point for the pitching motion is on the tunnel center
line in this paper (see Fig. 2). The small disturbance potential function 0 for the flow field in the

tunnel disturbed by the airfoil also satisfies Equation (2) like €. Here 0 is defined from the full
velocity potential function 4) as follows:

A A A

= U'. x + $0 (42)

Introduce a new function 0 related to 0 by the following:

10'(P = C'L= U . (43)

This results in the following:

V7. + -I 3.p* =0 (44)

where * + e (45)

4¢ and 0, are the time-dependent cosine and sine terms similar to OC and 0, in Equation (10). Using
Green's theorem, the following expression for 0* can be obtained:

S (*. V2T -T?"V24p)dO - ds, (46)

where 0 is an analytical real-valued function and the other conditions have been described in Equa-
tion (16). Let 0 be written as

-_-- * w//).K1 i-~df. j. sm, ),JJ); (47)

then this function is continuous and differentiable two times with and except at the point (x,z)
within the following band:

I - 1< 2H. (48)

Also, K:H n~r n r = O, i: t, !21, ... (49)

since the principal value of the integral must exist. 41 is satisfied by the equation

t* 0, (0)

I =. ...
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Hence, Equation (46) becomes

dk' (51)

Appendix B can be referred to for the detail derivation. In the same way as 0* ,

where ^

CP(x) = A CFc(x) + i dCS(X). (53)

ACPC and ACps are the time-dependent cosine and sine components of the pressure difference between
the upper and lower airfoil surface similar to ACp, and ACps. As in the expression for [0*1 +,

/= -- w(54)

where

CH(A) [ (I A (55)

C Cps tCp, and ACps are the time-dependent cosine and sine components. Noting the pressure
difference between the upper and lower wind tunnel walls with CpH (it) and using a Fourier series
expansion A gives

A CM () + ,"A A A.0 t) tPO X WO (56)

and hence,

C:H (A = CH (A) + i CH" .(7

Differentiating the both side of Equation (51) with z and substituting Equations (52) and (55) for
[#*]+ and [0*]4H into Equation (51) and letting z tend to zero give

w(~) 00
= v.p. CP(c)-KR.,-x))d - CM(cF.WA(M-x)d, (58)

where

K( ) Kr, i Ki) + (AKr* iAKi) (59)

and WA (x) W (,x) + i W co. (60)



From Equation (47) it follows

AA

vPfij rcot( s~,.r .,in J2

AM.. ( M.

- *k , 1. 9 - -

flU H4 (61)

AKi(x k - o ,A)- i 2 Z

... M. . P. CIO ~ f.M5
41/3 ~j - o( '_

1 --~ 1~'-I. cot L&1

ce7(2- (62)

AA

WrCM. ~pI A 2 (2 IM., 132 (2tMeX)

I *M. ~ f. .Cosec (2 H "-' (,t ) dig

M I yAL.



and A

W.,+~~ K (osX) (2) S 29XNO 40io

+( a 4M.) * 41,9 (5

AJ A

'Jart lw that

Ap

where

+ 
(2 A r

4/13 + I v

4Y ( -3/) (64)

Some examples of AiK and WA are shown in Figures 3 to 8. w(i) has been defined as

/ (') = W' r( ) t i (^) , (65)

where the upwash w(x4*) along the airfoil is expressed as follows:

and -Iv(y) (X C(, ) -S 4v t (66)

From Equation (41) it follows that

A

W () A. k. C (67)

Subtracting Equation (33) from Equation (67) gives

ZL 
H(C W(-x)dF

+ v-P. ACP(c0-)K( ,-x) dt, (68)

where I

AA
-wx^ W(X) - W X)(69)

and A ()=CP))-CP A) (71)

It should be noted here that CP (x) and CH (h) and W (A) can be measured in a wind tunnel test but
VPOi) and A and At are unknown. The unknown quantities in Equation (68) are ACP(z), A with
Ar being an arbitrary parameter. The aim in the wind tunnel wall correction is to obtain interference-
free data from the test data. Therefore, it is better for CP and ?P to be close to each other because
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there is the possibility that the difference between CP and CP can generate completely different flow
field from each other due to the coupling between viscous and inviscid flow regions such as the
separated flow. As a result, aA and Ar must be chosen so that ACP may be as small as possible. ACP is
a function of x and the magnitude of it depends on its definition. Equation (68) reduces to

V.P. ACP(c,). K(K -xr)d, = W1( ) t W(-14 (72)
XL U. " U60

where

W() =_ (c.)' (-z)d + H(c.)-WA(,-)dP. (73)

XL -00

In this paper, a-A and /Ar are chosen so that the following function may be a minimum:

) = I w + w d .(74)XL

It will be studied in the next section whether these values of - and Ar are satisfactory. Then

S 0 (75)
DCIA

and

ai
=0. (76)

From Equations (40), (67) and (69) it follows

A

ta~n(co,66) =(77)

where
WI

.. + + i fs , (78)

and (-) means the averged value over the airfoil chord.

Ao,

-Cf 5 2Ft~f )cosciA')J.(79)
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Because the values of Atr and -A can be calculated with the aid of Equations (77) and (79), the
right-hand side of Equation (72) can be estimated. If the value of the term in Equation (72) is small
enough over the airfoil to be neglected within the accuracy of the test condition, ACP can be also
neglected. In this case, the tunnel test data can be corrected in the sense of wind tunnel wall inter-
ference. However, not all tunnel test data can be corrected. In such circumstances, it is necessary to
solve the integral equation Equation (72) for ACP(x) and to get CP(x) with the aid of Equation (71).
However such additional correction is not recommended because it is desirable that tunnel test data
are affected as little as possible. In addition to the correction mensioned in this paper, the correction
corresponding to the time-averaged flow must be made. This correction is the same as that for steady
flow. The terms f, and fi on the right-hand side of Equation (78) can be calculated from Equation (73)
with the aid of Equations (61) to (64).

The wall interference on an airfoil in plunging motion can be estimated in a similar way as
that for pitching motion. The time and space co-ordinate system is the same as in the previous case.
The z-co-ordinate of the mean camber of the airfoil model in the motion in free air, Sc( ,),- A A A _

=,,c t + -o- SintIW.(t , (80)

where Sco means the mean camber of the airfoil itself and hA is the amplitude of the plunging

motion. In this case the upward velocity at a point on the airfoil is

' A A - Acso L (81)
IV (x ,t ) == gW.COSico0 k-(81)

Using thiq definition for W(i), it follows

w(X) = (V 9 W s sirt + (82)

Consider the same airfoil model in the plunging motion installed in a wind tunnel. The angular velocity
is also the same as W, and the z-co-ordinate of the mean camber, S (xt), is

t) = ScA I. O (83)

From Equations (65) and (66),

AA (84)
W(rJ) = - W .

By the same method used in deriving corrections for pitching motion, the corrections for the plunging
motion can be estimated. In this case, the estimation function I in Equation (74) becomes a function
of 6A and At, that is,

=j f~ (C F-) + w (c k)I d, (85)

This function must be minimum with respect to both!a and Atr:

- 0 ,(86)

and

- 0.

(87)



-12 -

From Equations (85) to (87),

= (88)

and
- Cos(IA' .)- i- --- " --- (89)

3. SOME EXAMPLES OF CORRECTION

Some examples of wall corrections using the new method are described here. It should be
noticed here that the examples indicate only the process of using the method and its limitations,
but that they cannot prove the validity of the method. This method has been already proved analyti-
cally on the base of some of the assumptions mentioned in the previous section. Many experiments
have indicated these assumptions are reasonable and they have been adopted in many other papers.

For simplicity in the calculations, the wall interference in an open tunnel is investigated.
In order to confirm the procedure of solving Equation (33) to be correct, the pressure distributions
on the oscillating airfoil in pitching motion are calculated using a numerical method. The airfoil is
installed in an open tunnel having a half-height of 5.0. The uniform flow Mach number is 0.866.
The airfoil chord length is 1.0 and the pitch axis is at the mid-chord point. The amplitude of the
oscillating angle of attack is 1.0 degree. Ten values of the reduced frequency are adopted ranging from
0.02 to 0.18 in steps of 0.02 plus 0.17 because 0.182 is approximately the tunnel resonance frequency
which can be calculated from Equation (49). The tunnel resonance frequency for the open tunnel
cannot satisfy the condition given in Equation (49). The amplitude of CL due to unit pitching motion
with reduced frequency is shown in Figure 9, and the phase lag in CL is shown in Figure 10. These
quantities are calculated from the expression

-- 2. , C' (90)
I 2T

and

L - TA-(CLs,/C,-), (91)
where

CL(t) = CLo + CLC s( o) C1 " CLS' Sn(t ) "  (92)

The two figures, Figures 9 and 10, show good agreement with the figures in Reference 3. This fact
means the present solving process is right. Then suppose the data obtained by this numerical way to
be data which should be corrected to data in the free air. In this case, the pressure coefficient on the
tunnel walls is always zero. With the aid of Equations (77) and (79), the incidence amplitude and the
phase lag in free air corresponding to the tunnel flow can be calculated from the pressure coefficient
distribution on the airfoil in the open tunnel. Results are shown in Figures 11 and 12. The pressure
coefficient difference between the upper and lower surfaces of the airfoil is

aCp(*A, A) C'S' t . W( a ,(X.o(t "t,4 =;'/'( (93)

which has been defined at Equation (53). The time-dependent angle of attack is expressed:

A

0((t) 0. O01745 3 3* SIA ((v (94)
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From Equation (1) follows

0c(t) - Y . sin .( -A (95)

For the pressure coefficient difference on the airfoil in the free air. This equation can be approxi-
mated by Equation (93) when the motion of the oscillating airfoil is defined by Equation (95), where
aA and W^ AT can be calculated using Equations (77) and (79). If the airfoil in the free air oscillates
in the same way as in the tunnel, that is,

(96)

the time variable t is transformed by

t + A la (97)

The resultant expression for ACP (i,t) can be written as:

=~~4 dArL).o.CC(). S,12AZ).coS( A~

Scrs(, )Icos(V,4e) - Co W( f.si ((l)J jf ) (98)

In this way, the in-phase and out-of-phase components of the pressure coefficient difference as a
function of the oscillating angle of attack can be calculated. By solving Equation (33) directly, AC
can be obtained. Comparison between ACp obtained from Equation (98) and Equation (33) provides
a simple way for correcting A and AT. The results are shown in Figures 13 to 14. These figures show
that the method is suitable for low reduced frequencies but fails near the tunnel resonance frequen-
cies. The time-dependent lift coefficient and pitching-moment coefficient about the pitch axis with
the angle of attack are also shown in Figures 15 to 18. This example gives the extreme case becaioe
the uniform flow Mach number is 0.866. The next example is the same as in the previous case ex.-ept
for the Mach number and the tunnel height. The uniform flow Mach number is 0.600 and the tunnel
semi-height is 4.0. In this case, the tunnel resonance reduced frequency is 0.52360. The reduced
frequency was varied from 0.05 to 0.50 in steps of 0.05 and 0.52. Plots of I CL I and OL. with k
are shown in Figures 19 and 20. The corrections, (aA - aA ) and wAr, are shown in Figures 21 and 22
while Figures 23 to 24 show ACp and Figures 25 to 28 show the CL vs a and Cm vs c. These figures
show also the same behaviour as in the previous case.

4. CONCLUSIONS

A new method of estimating the wind tunnel wall interference on an oscillating airfoil is
presented. Instead of expressing the wall condition in unreliable ways, the time-dependent pressure
distributions on the oscillating airfoil and near the tunnel walls in the flow direction are measured.
With the aid of the measured pressure distributions, the corrections to the incidence amplitude and the
phase lag, (ciAr), can be calculated by this new method. This method is very effective when the test is
performed in a tunnel with ventilated walls because the unreliable expressions for the wall character-
istics are not used at all in this method. The corrections are satisfactory except at reduced frequency
near the tunnel resonance frequency. To determine whether corrections can be carried on by this
method, it is necessary to check the induced upwash distribution on an airfoil due to the walls.
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LIFT COEFFICIENT DUE TO UNIT PITCHING
MOTION WITH REDUCED FREQUENCY

UN I FORM FLOW MACH NUMBER = 0.866
CENTER OF PITCHING MOTION 0.500

FREE

o OPEN TUNNEL
SEMI-HEIGHT = 5.Oc

0
0 0 0

0 o 0 o

0

00

L)

d _ :

0.0 0.1 0.2

FIG. 9: 1 CLIO VS k(



.24 -

PHASE LAG IN LIFT DUE TO UNIT PITCHING
MOTION WITH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER = 0.866
,: CENTER OF PITCHING MOTION 0.500
c_

FREE

o OPEN TUNNEL

SEMI-HEIGHT = 5.00c

C- -T I

0.1 0.2

0 k
\ 0

oo

'0 o

00

C

FIG. 10: 10LI1 vs k



-25 -

I NC IDENCE AMPLI TUDE I NCREMENT DUE TO
WALL I NTERFERNCE WI TH REDUCED FREQUENCY

UN I FORM FLOW MACH NUMBER =0.866

CENTER OF P ITCH ING MOTI ON 0.50

OPEN TUNNEL
SEM I-HE IGHT = 5.00c

I NC IDENCE AMPLI TUDE =1.00

0 k9. 0 0.2

0c

FIG. 11: Aa Sk



-26-

PHASE LAG I N LI FT DUE TO WALL I NTER-
FERENCE WI TH REDUCED FREQUENCY

UN IFORM FLOW MACH NUMBER =0.866

0CENTER OF P ITCH ING MOTI ON 0.50

OPEN TUNNEL

SEMI-HEIGHT =5.00c

I NC I DENCE AMPLI TUDE =1.00:

90

0-

0. 01 .

a)A

L0 0o

03

A

FIG. 12: wr VS It



-27.

PRESSURE DIFFERENCE DISTRIBUTION

ACpccos(w) t)+ACpss i n(ci t)

UNIFORM MACH NUMBER 0.866
REDUCED FREQUENCY = 0.080

THE CENTER OF P ITCH ING :0.50

ACp IN FREE AI R lA = 0.9510
..... ACps IN FREE AI R A

A

x OPEN TUNNEL IH/c= 5.00 ot A= 1.0000

o CORRECTED a=~ 0.9510

<o0x

i.0.C

Lo

FIG. 13: AC V8 A /C



.28 -

PRESSURE DIFFERENCE DISTRIBUTION

A~pcCS(W )+ACpss i n wt

UNIFORM MACH NUMBER =0.866

REDUCED FREQUENCY = 0.170

THE CENTER OF P ITCH ING : 0.50

- A pc IN FREE AIR 0(A= 0.7240
.....ACPS I N FREE AI R A

* OPEN TUNNEL H/c= 5.00 a A= 1.0000

* CORRECTED aA= 0.7240

(fl I

0

C)

C;

0F

o..~* xo

0r XXX

0

FIG. 14: AC , A /C



-29-

CL-a CURVE

UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.080

THE CENTER OF P ITCHING : 0.50,
A

OPEN a A= 1.0000 H/c= 5.00
a = 0.951'

CORRECTED A2 T=-9.8

FREE aA 0.951°

Lol

C]

//"

I -----

-2.0 -1.0 1.0 2.0
/ . a degree

FIG. 15: CL vS a

i .i



- 30-

CL-a CURVE

UN IFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.170

THE CENTER OF PITCHING : 0.50

OPEN a A= 1.0000 H/c= 5.00
a -= 0.724°.CORRECTED &AT= 33.8

FREE a A 0.724"
u'

CL 0 1q

_ //
I - ]

-2.0 -1 1.0 2.0

a degree

I1/

FIG. 16: CL vsa



-31 -

C -a CURVE

UN IFORM MACH NUMBER =0.866

REDUCED FREQUENCY =0.080

THE CENTER OF P ITCH ING :0.50

OPEN a A = 1.0000 H/c= 5.00
CORRECTED = 0.951*

FREE oa A 0.9510

-2.0 -1.0 (.0 .: 1.0 2.0/ ft a degree

FIG. 17: Cm vs a



- 32-

C m-a CURVE

UN! FORM MACH NUMBER =0.866

REDUICED FREQUENCY 0.170
THE CENTER OF P ITCH ING :0.50

A

-- OPEN o( A = 1.0000 H/c= 5.00
CORRETED0( = 0.7240

W \T-r 33.80
FREE ax A= 0.7240

-2.0 - .0 7 .0 .0 2.0

~ a degree

FIG. 18: Cm vs a~



33 -

LIFT COEFFICIENT DUE TO UNIT PITCHINIG
MOTI ON WI TH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER =0.60

CENTER OF PITCHING MOTION 0.50

* -- FREE

o OPEN TUNNEL

SEMII-HEIGHT =4.00c

c;c

0.00 0.25 0.50

A

FIG. 19: 1ICL I*vs k



.34 -

PHASE LAG IN LIFT DUE TO UNIT PITCHING
MOTION WITH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER =0.60

CENTER OF P ITCH ING MOTI ON 0.50

1 FREE
o OPEN TUNNELISEM I-HE IGHT =4.00c

00
0 002

0 
c 0

00

0

FIG. 20: 1 OL lo VS k



-35 -

I NC I DENCE AMPLI TUDE I NCREMENT DUE TO
WALL I NTERFERNCE WI TH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER =0.60

CENTER OF P ITCH ING MOTI ON 0.50
N

OPEN TUNNEL
SEM I-HE IGHT =4.00c

I NC IDENCE AMPLI TUDE =1.00

0

0 0 0 -- o-e-oG-0 -o
00.25 0.5Q

FIG. 21: AaA vs kc



-36-

PHASE LAG IN LIFT DUE TO WALL INTER-

FERENCE WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.60

bCENTER OF P ITCHING MOTION : 0.506
C!o

OPEN TUNNEL

SEMI-HEIGHT = 4.00c

INCIDENCE AMPLITUDE = 1.0° o

00

o

0

0:
0

0
0

0
0

o" I u,

0 O0 0 500 0.50

%ct 0c~

o
01
dj

FIG. 22: WAT vs k



-37.

PRESSURE DIFFERENCE DISTRIBUTION

Cpccos( t)+ACpss i n( t t)

UNIFORM MACH NUMBER = 0.600

REDUCED FREQUENCY = 0.100
THE CENTER OF PITCHING : 0.50

ACpc IN FREE AIR 0.9310

.ACps IN FREE AIR
A

* OPEN TUNNEL H/c= 4.00 a A 1.0000

o CORRECTED a A= 0.9310

c;

tC

0

0

U-

6 .5 x1.0

'" .
N

FIG. 23: ACp vs A/c



- 38-

PRESSURE DIFFERENCE DISTRIBUTION

ACPCCOS(cA A)+ACPSSi n(A A)

UNIFORM MACH NUMBER =0.600

REDUCED FREQUENCY = 0.500
THE CENTER OF P ITCH ING : 0.50

-ACp I N FREE AI R aA=1.1260
................. Ap I N FREE AI R

x OPEN TUNNEL f-/c= 4.00 a A= 1.000 0

a CORRECTED a= 1.1260

0
to

C.,

0

Uz

.3.0 x 0.5 1.0

x

FIG. 24: AC, vs A/c



-39-

CL-a CURVE

UNIFORM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.100

THE CENTER OF PITCHING : 0.50
A

OPEN a A= 1.0000 H/c= 4.00

....... ......... CORRECTED = 0.931gCORRECED %r=_7.3o

FREE a A= 0,931°

CLoi

4/
-2.0 -1.0 A1 1.0 2.0

a degree

FIG. 25: CL VS a



-40-

C .-a CURVE

UNIFORMI MACH NUMBER =0.600
REDUCED FREQUENCY =0.500

THE CENTER OF PITCHING :0.50

OPEN a=A 1.0000 H/c= 4.00
..........COR EC EDa= 1.1260

CORRCTEDCOST30.40

FREE a( A= 1.1260

CL

-2.0 -1.0 . 0. 1.0 2.0

a degree

FIG. 26: CL VS



-41 -

C-o CURVEm

UNIFORM MACH NUMBER 0.600
REDUCED FREQUENCY 0.100

THE CENTER OF PITCHING : 0.50
A

OPEN a A= 1.000* H/c= 4.00
a .= 0.931*

. CORRECTED A

FREE ^A= 0.9310

-2.0 -1.0 1,0 2.0ac degree

FIG. 27: Cm vs a



- 42-

C -a CURVE

UNIFORM MACH NUMBER =0.600

REDUCED FREQUENCY =0.500

THE CENTER OF P ITCH ING :0.50

OPEN a A = 1.0000 H/c= 4.00
CORRCTEDa =1.1260

w \-7-= 30.40
FREE A =~ 1.1260

0

FIG. 28: C. vs



-43 -

Tunnel wall

JH,

-(x .z) A irfo il

ake

!unnel wall

FIG. 29: DOMAIN OF FLOW FIELD IN A TUNNEL

i i
______



- 45 -

APPENDIX A

DERIVATION OF EQUATION (19)

Firstly it will be proved that O(, x,z) in Equation (17) satisfies the Helmoltz equation
Equation (18) everywhere except at a point (x,z). Equation (19) will be obtained later.

i (,;x,z) in Equation (17) is bounded everywhere except at a point (x,z). Unless =,

the derivative of ' with t or can be obtained by the way of differentiating the two integrands on
the right-hand side of Equation (17) directly with t or '. So i satisfies Equation (18) unless = z.
From Equation (17) it follows:

-~ ~ ~ O I Kcs~4-~7 .COS IK( ,6d8d , 1. " o o 2 1 ( A - )

Equation (A-I) can be arranged to give:

f K) fcosIK () -x)0jd0 i-re COS/ K(4,- )] dig

C04 K 1, (A-2)

Because the first two integrals at the right-hand side of Equation (A-2) can be estimated analytically
easily, Equation (A-2) reduces to

VK

27 IC

1-~K( -o x

0

00 el_-/l
-

_ (A-2a)

-je -e dI~csK7 jQj

So

gil. l = _ = ; X (A-3)
4--+o d4  4--z-o a,

Because ' is continuous with " except at a point (x,z) and because of the relation (A-3), the derivative
of " with " on the line " = z exists and its value is also 0 unless t f x. The derivative of ;" with " is
also continuous with respect to " except at a point (x,z). The second derivative of i; with " is obtained
from Equation (18):

.y .4 
118 

_

IK
- im muv-u u
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From Equation (A-4), the second derivative is symmetric with respect to ( -z). Resultantly the
second derivative does exist and its value is

a---- = rn K (A-5)

Newm=nnZ = --- -_0 :Z

because of the same reason as the first derivative is estimated. From Equation (18), follows

V ~ ~ N (_ = '  I 1-,x1 I (A-6)

where No is the Newmann function. So the first and second derivatives with t exist unless = x.
Because the second derivative of , with t at " f z is symmetric with respect to ( - z),

2y I~ 4-± 
(A7)

It is of course that the second derivatives of " with both and " are bounded even if " tends to z
unless = x. Resul'antly k(,;x,z) can satisfy Equation (18) everywhere except for a point (x,z).

Now suppose a small circle in the considered space (,) which has a radius p and its center
at (x,z). An arbitrary point () on the circle can be expressed:

= + 1- p.sinQ ; >0 (A-8)

If n is the inward normal co-ordinate to the circle,

_ - (A-9)

Therefore

- co .p coss- d..-O~s'~'

_ R f#7 0 -K/,fl/y.

-tp( , (A-10)

where P is bounded for both p and 4'. This circle is notated with 3)2p.

4 ~ -~'d~= ~ ,' (A-11)

where (xo, zo ) is in an2p.

P- 0  V (A-12)

Because
It .M 21 P(p,*)d( =0,

"° 0 (A-13)
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A'I K P I .- e l i n i 't I o -/ -2 1T"

Q1-O 0 ,o- i 1- r
P-0 1t Cs KIsOSn09 I j~ f sin'? d, (A-14)

and

L' p 2 - o K 0z-t" P • -K IlS
ir, ?k 51'ri • , Ki (cos )#jd9] dt 02l 1 d~t. (A-15)

Then

p-4 0 p

Similarly ip on the circle is

Z / "- - " e-PKitf e /(cw)8dO i * (PL 60 ) , (A-17)

where Q(p,o) is bounded for both p and i. Then

where M is the maximum value of 30*/an on ap. From Equation (A-17) follows

IKI Sill V, ,-f_- 1 e - .Wt{ eW, )eld,9 4_Q (A-19)

The integral at the right-hand side of Equation (A-19) reduces to

I e

< .Lf.er~.~ = 4H 0KcpsM1)-N 0 Kfk'I-UI (A-20)

where H0 is the Struve function and bounded for any value of its variable. The Newmann function N o

has the following property:

Nocx) = zN. Wo") ( ,

20 (.1) t 2?f. _, (A-21)

where J0 is the Bassel function and bounded for x and y is the Euler constant number. (y f 0.57721...)
Then

P--0 (A-22)A ........ . ................
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Resultantly from Equation (A-18) follows

d --- s -- 0 ; - 0 (A-23)

With the aid of the thin airfoil approximation Equation (16) becomes

L". A-.d _ - (A-24)

where M 2 R is a circle with the radius R and its center at (x,z). As previously mentioned, @ and its
first derivative with " are continuous except for a point (x,z). So the first integral becomes

ao*/a" means the upward velocity component and should be continuous throughout the flow field.
But it must coincide with the vertical component of the airfoil surface velocity from XL to XT. XL
and xT are the transformed leading and trailing edge co-ordinates, respectively. Because the airfoil
model is oscillating in one piece, there is no difference in the vertical velocity between the upper and
lower surfaces. Then

- 0 X . (A-26)

As a result the first integral of Equation (A-24) becomes

-- ]- (A-27)

From Equations (A-10) and (A-17) it follows that

- = I4 (A-28)

and

I P=R  0 [ R -00° , (A-29)

where 'O' is the Landau's symbol and (A-28) means

R-oo P F=R C (A-30)

tk I p-R C) O((A-31)

and

la 0R (A-32)

Then

j I I J)lI I(A-33)
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In this case Equation (A-24) becomes the same equation as Equation (19). However CP(i) obtained
from the integral equation Equation (33) based on Equation (19) is limited because 0* corresponding
to ZP always satisfies the conditions (A-31 and (A-32). Experimentally such ZP as is obtained from
Equation (33) seems a good approximation for the flow considered. Both conditions (A-31) and
(A-32) are assumed to be satisfied in this paper.
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APPENDIX B

DERIVATION OF EQUATION (51)

The integral function on the right-hand side of Equation (47) is analytical everywhere
including the point (x,z). The function also satisfy the Hermholtz equation Equation (50). As a result
4 is also a solution of Equation (50). Because 4 can be expressed in the form of the sum of 4 and an
analytical function everywhere, Equation (46) reduces to the following form similarly to Equa-
tion (16): (see Fig. 29)

_-V Lop d4-, _

+ [Lot,~ d

-L 'Z . -

From the same reasoning as mentioned in Appendix A,

0 X I)C,00)(B-2)

The last term in Equation (B-1) vanishes. Infinitely upstream there is no disturbance so that(-o

From Equation (47) it follows

- 1i4.,1=0I rR---oo,0 (B-4)
where '0' is the Landau's symbol in Equation (B-4) and

R--joo (B-5)

where c is a constant number. Similarly

I~,.,I-0( ) ; .o . (B-6)

Let
(pot

an4-~R1 = ' [ R i (B-7)I ~I ,,5  = o (J ) ; [R, -. o] (8-7)--and

J * .4-R o (T- ; L R--.-.O ,

MMMawMA
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where 'O' is also the Landau's symbol and Equation (B-7) becomes

i.t I * -R I (B-9)
R-o 'F-R

Then r t AiH 0( -0
Experimentally, the conditions (B-7) and (B-8) are always satisfied except for the case of tunnel
resonance. Equation (B-1) then becomes Equation (51).
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